Skip to content

SHA Computing

How Sunghyun handles computer

Toggle menu
  • Computer Science
    • Architecture
    • Algorithm
    • Data Structure
    • Database & File
    • Operating System
    • Network
    • Reference
  • Data Science
    • Data Analysis
    • Data Mining
    • Machine Learning
    • Computer Vision
    • AI Paper Review
    • Statistics
    • Reference
  • Software
    • Git
    • Android App
    • Web Server
    • Design & Analysis
    • My Project
    • Reference
  • Coding
    • C/C++
    • JAVA
    • Python GUI
    • Algorithm Practice
    • Reference
  • Log In

Tag: video anomaly detection

October 23, 2024December 5, 2024My Project

VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection (ACCV 2024)

This research paper is accepted at the ACCV conference in 2024 and also serves as master’s degree graduation thesis. Title: VideoPatchCore: An Effective […]

July 12, 2024July 12, 2024Data Science, Paper Review

논문 리뷰 – Harnessing Large Language Models for Training-free Video Anomaly Detection

연세대학교 ‘최신컴퓨터비전동향’ 수업에서 진행한 발표 자료입니다. 혹시 피드백이나 문제점이 있으면 알려주시면 감사하겠습니다! – 논문: https://arxiv.org/pdf/2404.01014 Harnessing Large Language Models for Training-free Video Anomaly Detection <PT 자료> <PT […]

April 25, 2024April 25, 2024Data Science, Paper Review

논문 리뷰 – Video Anomaly Detection

연세대학교 ‘데이터베이스시스템응용’ 수업에서 진행한 강의 자료입니다. 비디오 이상 탐지(Video Anomaly Detection) 주제에 대한 이론과 실습 내용을 다룹니다. 실습 코드는 아래의 실습 pdf에서 확인해보실 수 있습니다. […]

March 15, 2024January 14, 2025My Project

Making Anomalies More Anomalous: Video Anomaly Detection Using a Novel Generator and Destroyer (IEEE Access)

This is a research paper published in the IEEE Access journal in 2024. Title: Making Anomalies More Anomalous: Video Anomaly Detection Using a […]

January 1, 2024February 6, 2025My Project

LVLM을 활용한 사용자 맞춤형 비디오 이상 탐지 연구 (KSC 2024)

2024년 한국정보과학회에서 실시한 한국소프트웨어종합학술대회(KSC 2024)의 연구 논문이다. 논문 제목: Anomaly LVLM: LVLM을 활용한 사용자 맞춤형 비디오 이상 탐지 연구논문 저자: 안성현 · 조영완 · […]

Recent Posts

  • Python – 코딩 테스트 주요 코드 모음
  • 논문 리뷰 – Temporal 2D-Variation Modeling for General Time Series Analysis
  • 논문 리뷰 – Can LLMs Understand Time Series Anomalies?
  • VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection (ACCV 2024)
  • 논문 리뷰 – Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts

Recent Comments

  • leds and led lighting on 논문 리뷰 – Context Encoders: Feature Learning by Inpainting
  • Master on Data Structure – Floyd Algorithm
  • cena zlata on Data Structure – Floyd Algorithm
  • whoiscall on 논문 리뷰 – Swin UNETR
  • occurring on GAN 기반 이상치 탐지

Archives

  • March 2025
  • October 2024
  • September 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • November 2023
  • June 2023
  • May 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • January 2021
  • September 2020
  • August 2020
  • June 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019

Categories

  • Algorithm
  • Android App
  • Android App & Web
  • C/C++
  • Coding & Reference
  • Computer Architecture
  • CS_Reference
  • CSE
  • Data Mining
  • Data Science
  • Data Structure
  • Database & File
  • Design & Analysis
  • Git
  • JAVA
  • Machine Learning
  • My Project
  • Network
  • OS
  • Paper Review
  • Practice
  • Python GUI
  • R Programming
  • Reference
  • Statistics
  • SW_Reference
  • The Others
  • Uncategorized
  • Vision
  • Web Server

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
May 2025
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Mar    

search

Get in touch

Korea, Republic of
cse@shacoding.com
© 2025 SHA Computing. Proudly powered by Sydney