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01 Background Video Anomaly Detection

= Video Anomaly Detection aims to determine whether abnormal events occur within video streams
= Abnormal events include the appearance or action of objects that are not suitable for the situation.

= The goalis to do Binary Classification.
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01 Background Main Problem

= Class imbalance problem |{x;|y; = 0} » |{x;|ly; = 1}|
= Diverse anomaly
= one-class classification is utilized that learns exclusively from normal data and classifies anything

not resembling the patterns of normal data as abnormal.
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Rodrigues, Royston, et al. "Multi-timescale trajectory prediction for abnormal human activity detection." Proceedings of the IEEE/CVF winter conference on applications of
computer vision. 2020.
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01 Background One Class Classification

= Classification-based: Learning cluster that group normal feature vectors within a specific range.

Ag(x) = Diff(¢g(x), )

Keyidea - normal data: clustered in a 'normal’ cluster ¢e: kernel function
= abnormal data: away from the 'normal’ cluster c: center of hypersphere

= Distance-based: Storing features of normal data in memory and using the Nearest Neighbor search for classification.

Ag(x) = min Diff(¢g(x), po(xer))
Xtr€Xer
Keyidea = normal data: similar to training data in a feature space
= abnormal data: NOT similar to training data in a feature space
= Reconstruction-based: Learning to reconstruct normal samples using a generative model.
Ag(x) = Diff(x, Recong(x))

Keyidea - normaldata: reconstructed well

 abnormal data: NOT reconstructed well
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01 Background Classification-based Method (Deep SVDD)

» Find the smallest hypersphere that surrounds the normal data in the feature space

and use its boundary to detect anomalies.
= Learn the kernel function that maps normal features inside the hypersphere through deep learning.

= Anomaly Score is the degree to which the output feature is distant from the center,

A
1 & A o
o min 5;||q>(mi;W)—cH2+§;|Wf||%
O s(x) = [[p(x; W*) — c|®

Ruff, Lukas, et al. "Deep one-class classification." International conference on machine learning. PMLR, 2018.
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01 Background Distance-based Method (PatchCore)

= Utilize a pre-trained model to memorize the normal features and apply this memory for anomaly detection.
= Storing all normal features in memory can lead to hardware constraints.
= Features stored in memory are subsampled using a greedy coreset subsampling algorithm,

where a coreset is a small amount of data that well represents the existing dataset.
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Roth, Karsten, et al. "Towards total recall in industrial anomaly detection.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
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01 Background Reconstruction-based Method (Conv-AE, FFP)

= Conv-AE assumes that the autoencoder is trained to reconstruct only normal frames,
meaning it will not be able to reconstruct anomalous frames.
= FFP assumes that if it is trained to predict only normal future frame, it will not be able to predict anomalous future frame.

= Deep learning models can generate anomalous frames due to their powerful generalization capability.
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Hasan, Mahmudul, et al. "Learning temporal regularity in video sequences." Liu, Wen, et al. "Future frame prediction for anomaly detection—a new
Proceedings of the IEEE conference on computer vision and pattern recognition. baseline." Proceedings of the IEEE conference on computer vision and pattern
2016. recognition. 2018.
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01 Background Reconstruction-based Method (MemAE, MNAD)

MemAE stores the features of normal data in a memory module and generate normal data using memory.

MNAD attempts anomaly detection using only M memory items to generate normal data.

The model is trained to cluster normal features based on memory items to create independent items.
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Park, Hyunjong, Jongyoun Noh, and Bumsub Ham. "Learning memory-guided normality
for anomaly detection.” Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 2020.
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02 Introduction rroblem Definition

= Optimizing the memory and encoder-decoder simultaneously is challenging due to different training objectives.
= Developing both the memory and model is complex, making it harder to approach the VAD task.

= Memory size can significantly impact performance: a smaller size may lower performance, while a larger size can increase latency.

Methods Ped2 [21]|Avenue [24] Shanghai [26]
MPPCA [15] 69.3 - -
MPPC+SFA [15] 61.3 - -
— . MDT [25] 82.9 - -
S B __ EEmEs | AMN (o wos | -
: ] - Unmasking [41] 82.2 80.6 -
( H i H ) MT-FRCN [10] 92.2 - -
; AMC [31] 96.2 86.9 -
ConvAE [Y] 85.0 80.0 60.9
Encoder M | Decoder | | TSC [26] 91.0 80.6 67.9
‘ | StackRNN [26] 92.2 81.7 68.0
L2 i g § AbnormalGAN [33] 93.5 - -
Frames -~ J Generated Ground & |[MemAE w/o Mem. [5]| 917 81.0 69.7
frame truth MemAE w/ Mem. [¥] 94.1 83.3 71.2
Ours-R w/o Mem. 86.4 80.6 65.8
Ours-R w/ Mem. 90.2 82.8 69.8
5 Frame-Pred [22] 954 85.1 72.8
2 Ours-P w/o Mem. 94.3 84.5 66.8
*|Ours-P w/ Mem. 97.0 88.5 70.5

Park, Hyunjong, Jongyoun Noh, and Bumsub Ham. "Learning memory-guided normality for anomaly detection." Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020.
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02 Introduction «ey idea

» Objectives

> Explore effective memory utilization method for Video Anomaly Detection.

% Success in the Image Domain: PatchCore (CVPR 2022)
@ Optimize memory only and attempt anomaly detection through distance comparison between memory and features.

@ Ensure robust performance against memory size using Coreset Subsampling.

% Extending PatchCore to the Video Domain

> Development of VideoPatchCore enables effective memory utilization for anomaly detection in the video domain.
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02 Introduction Extending to the video domain

= Video is composed of a continuous sequence of frames.

= Anomaly is not limited to a single object but can be determined by the interactions between multiple objects.

» There are anomalous events that can only be determined by observing the scene (i.e., wrong direction).

Fighting
= Utilize temporal information (i.e., motion) to represent the time-varying changes of objects.

= Perform local anomaly detection at the object level and conduct global anomaly detection at the frame level.
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02 Introduction overview

= An effective approach for memorizing normal features for VAD.
= Local stream is object-based, detecting anomalous appearances and actions of individual objects.

= Global stream is frame-based, detecting anomalies related to multiple objects or scenes.
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02 Introduction Argument

» The existing method (Memory-augmented Method) that optimizes both the model and memory has three issues:

increased optimization difficulty, complexity of implementation, and performance variability depending on the memory size.

The proposed method (VideoPatchCore), which optimizes only the memory, can address all these issues.
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03 Method .o stages

= There are two stages: Memorization and Inference.
= |nthe memorization stage, features are stored in memory, which is then optimized using

greedy coreset subsampling from PatchCore.
= |nthe inference stage, anomaly scores are derived by calculating distances between memory and features.
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03 Method vision encoder

» CNN-based CLIP model is adopted as the encoder, utilizing layer 2 and layer 3 (¢, ¢3) similar to PatchCore.
» Locally-aware features ,.; represent both fine- and coarse-grained information of the objects.

= Globally-aware features g,.,; represent global information of the frames.

g ek li = {fap (‘p2 (Oi))! fap (@3(01)) (1)
F-\ where f,,, represents the average pooling and (-,') denotes tensor concatenation.
Ly Subsequently, l;.; are reshaped into If € R™WXCXdxhxw,
I1:d

gi = ‘\(fap (‘;02 (Fi)); fa'p((P3(Fi))) (2)
Globally-aware
Frame Fy4 features gi = fgap (9i) + fgmp (9:) (3)
ooy - —
Id
where fyqp and fgmy denote global average pooling and global max pooling, respectively.
91d Subsequently, g,.; are reshaped into gf € REX@*1x1,
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03 Method Split Pooling

= The dimensionality of If € R™*<*@x>W g impractically large for video processing.

= Split pooling reduce the number of channels, transforming If into R axhxw (¢ 5 ¢y

= Divide If into ¢’ groups and compresses by averaging the channels of each group.

X € R¢

Y € R
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03 Method raich partition

= Spatial partition focuses on appearance information, generating patches while disregarding temporal information.
= Temporal partition emphasizes motion information, generating patches while ignoring spatial information.

= High-level partition utilizes extensive spatiotemporal features for extracting the global context across frames.
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03 Method Spatial Partition

Appearance information is crucial for evaluating anomalies in objects and can be derived from spatial features.
= Temporal global pooling preserves spatial information while ignoring temporal aspects.

= Average pooling is applied to consider various regions of the object.

rrr— _\"l
4 3 Spatial o
T I
Global Poo Spatial Reshape Memory Bank o
Pooling Q
= o
>[ |2 A= woe || SM P18
(x objects) =
c'Xdxhxw ¢ xhxw ¢’ xhxw hw x ¢’ @
.
Spatial Partition S 2 /)
SpatialPatches = fu (ftgp (lf)) (4)

where f; 4, denotes the temporal global pooling. Finally, the results are reshaped into

ROVA™*C where h > h and w > W.
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03 Method Temporal Partition

= Motion information in objects represents changes over time, making it crucial for VAD.
= Utilize the adjacent temporal information within If to generate motion features mf.

Feature differences are computed and the representative motion values are determined through global pooling.

's ™

7 S 3
Temporal o
Calc Motion feature Spatial Memo ry Bank )
Global Pool e o
0
-[[]- == TM' ¢
store e]
¢’ xdxhxw c’xdxhxw ¢¢'xdx1x1 dxc (x objects] =
N d /
mf(t) = |lf(t+1) - lf(t)| (5)
TemporalPatches = fgq,(mf) (6)

! . .
mfy € R represents the difference between the t" and ¢+ 1" time

within {f, and it belongs to mf € R™X¢'*dxhxw where d = d — 1. Finally, the results

are reshaped into ROv@xc’,
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03 Method wvismatched Pooling

= Mismatched Pool performs GAP during the memorization and GMP during the inference stage.
= Normal objects are more static than abnormal ones,
so the average and maximum of normal motion features are expected to be similar.

In contrast, abnormal motion features are expected to show significant differences between these values.

= Prevent the retrieval of nearby patch from memory when abnormal patch is input.

< - - >
Mismatched Pooling Normal case
s . N 7 . B €-=-=--- >
Calc Motion feature . Calc Motion feature .
Spatial Spatial
Global AvgPool Global MaxPool
|:> IE I:> IE < - - - - >
Abnormal case
tC’XEXhXW C’XEXIXIJ kc:’;»e:&;«:,!;,)(.,f.f c'><3><1><11 S >
Memorization
Inference : Test patch (max)
: Memory patch (max)
: Memory patch (avg)
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03 Method High-level Partition

= |nframes, Global context processes the relationship between the objects and the scene,

and considers interactions between different objects.
= Temporal pyramid pooling is utilized to obtain high-level temporal information.

= Secure multi-scale temporal information, addressing the limitation of only using adjacent temporal information.

rrf’ -\ _\ N
Temporal Pyramid Pooling High-level Semantic g
L Reshape Memory Bank =
|%_‘ = g
—*% store Z
0r 1 ] =
cXxdx1x1 cxd cxd dxc 8
| / )
L
HighlevelPatches = Z firp (9f) (7)
=0

Temporal pyramid pooling is implemented using f,ﬁlp. In this case, f,glprepresents

applying the max pooling operation [ times. Finally, the results are reshaped into R?*¢,
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03 Method Anomaly Scoring

and the maximum patch score s* is computed.

x*,m* = arg max arg min||x — m||,

— . * - *
LAS = 61 Sspatial + 52 Stemporal

xe X meM

st = |lx* =m?||;

- *
GAS = Shigh—level

Anomaly Score = ¥, -

LAS— u(LAS)
o(LAS)

Ly

GAS — u(GAS)

o(GAS)

(8)
(9)

(10)
(11)

(12)

Using the nearest neighbor method, the closest memory item to the patch is found,

The final anomaly score is determined by calculating the weighted sum of the scores computed for each memory bank.
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04 Experiments patasets

CUHK Avenue (Avenue) ShanghaiTech (SHTech) IITB Corridor (Corridor)

Training frames

Dataset Testing frames Abnormal events
(normal)
) . ) ; .
Avenue 15.328 15.324 Running. Throwing o;‘?c ect, Wrong direction,
SHTech 2.74.515 42.883 Throwing obj er:t, J@pmg, Pushing, Riding
a bike, Climbing, etc
Corridor 3.01.999 1.81.567 Protest. Unattached Baggage. Cycling, Sudd

en Running, Fighting, Playing with Ball, etc
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04 Experiments pemo
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04 Experiments Qualitative Evaluation

= PatchCore detects anomalies through the appearance information of objects.

= VideoPatchCore detects anomalies by utilizing the appearance and motion information of objects,

along with high-level information from frames.
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04 Experiments Qualitative Evaluation

= Anomaly Score Visualization fAvenue]

——— PatchCore: AUC=0.66%
— VideoPatchCore: AUC=0.98%
Ground-truth

= Necessitate consideration of motion

information. Temporal memory plays a
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04 Experiments Qualitative Evaluation

= Anomaly Score Visualization [SHTech]

= Necessitate consideration of motion

information. Temporal memory plays a

Anomaly Score
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= Necessitate consideration of interactions

between two peoples. High-level semantic

memory plays a crucial role in this scenario.
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04 Experiments Qualitative Evaluation

= Anomaly Score Visualization /Corridor]

= Necessitate consideration of motion

information. Temporal memory plays a

Anomaly Score

crucial role in this scenario.

_, | = PatchCore: AUC=0.31%
" = VideoPatchCore: AUC=0.94%
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Frame number

= Necessitate consideration of relationship

between the person and object. High-level

semantic memory plays a crucial role in this
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04 Experiments Ablation Study (Spatial and Temporal memory)

= Spatial Memory allows for the effective detection of appearance anomaly events (i.e., cars, bicycles).
= Temporal Memory allows for the effective detection of motion anomaly events (i.e., jumping, running).
= By utilizing both Spatial and Temporal Memory, anomaly detection can be performed

by considering both appearance and motion status.

Table 2. Comparison of the AUROC scores for the spatial and temporal memory on the
Avenue, SHTech and Corridor datasets.

Method Avenue SHTech Corridor
Spatial 84.8% 74.7% 70.5%
Temporal 66.9% 78.8% 73.5%
Spatial+ Temporal  90.3% 84.8% 76.3%
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04 Experiments Ablation Study (Split pooling)

Head compresses If by selecting ¢’ channels from the front.

Random compresses lf by selecting random ¢’ channels.

Split pool divides If into ¢’ groups and compresses by averaging the channels of each group.

Proposed method achieves high performance by effectively compressing the original information.

Table 3. Comparison of the AUROC scores for compression methods on the Avenue,
SHTech and Corridor datasets.

Compression Avenue SHTech Corridor
Head 82.7% 76.9% 74.9%
Random 85.9% 83.8% 74.8%
Split Pool 90.3% 84.8% 76.3%
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04 Experiments Ablation Study (Mismatched pooling)

Avg Pool uses GAP in both the memorization and inference stages, Max Pool applies GMP in both stages.
= Mismatched Pool performs GAP during the memorization and GMP during the inference stage.

= Differentiating between normal and abnormal temporal patches

by varying the pooling methods at each stage is effective for VAD.

Table 4. Comparison of AUROC scores for feature pooling methods in the temporal
partition across the Avenue, SHTech and Corridor datasets.

Pooling Avenue SHTech  Corridor
Avg Pool 84.9% 76.1% 74.7%
Max Pool 88.2% 83.8% 75.7%

Mismatched Pool 90.3% 84.8% 76.3%
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04 Experiments Ablation Study (Local and Global stream)

= Using the local stream complicates detecting scene anomalies or abnormal interactions between multiple objects.
= Using the global stream together enhances VAD by leveraging broader spatiotemporal information.
* Inthe latter datasets, there are many situations where objects are adjacent to each other,

allowing the local stream alone to partially fulfill the role of the global stream.

Table 5. Comparison of the AUROC scores for the local and global stream on the Avenue,
SHTech and Corridor datasets.

Stream Avenue SHTech  Corridor
Local 90.3% 84.8% 76.3%
Global 84.4% 68.4% 67.2%
Local+Global 92.8% 85.1% 76.4%
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04 Experiments Further Analysis (Coreset subsampling ratio)

Higher subsampling rates store more normal features in memory, improving performance but slowing down speed.

However, using Coreset subsampling results in a minimal performance difference of 1% and 99% (less than 0.5%).
= No need to consider the memory size for large video datasets.

Table 6. Comparison of AUROC scores for the subsampling ratio on the SHTech and
Corridor datasets.

SHTech Corridor
Subsampling ratio

AUC FPS AUC FPS
1% 84.6% (-0.5%) 170.9 76.0% (-0.4%) 143.4

10% 85.0% (-0.1%) 154.8 76.4% (-0.0%) 113.5

25% 85.1% (-0.0%) 96.1 76.3% (-0.1%) 60.0

50% 85.1% (-0.0%) 54.8 76.3% (-0.1%) 40.0

75% 85.1% (-0.0%) 39.6 76.3% (-0.1%) 25.2

99% 85.1% 31.0 76.4% 19.5
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04 Experiments Further Analysis (Memorizing Technique)

= Former method constructs memory from each video and concatenates them.
= Latter method constructs memory from all videos collectively.
= Expected that former method would be less constrained by hardware limitations
but might suffer from a lower performance due to the uneven distribution of features.

= However, the performance difference between the two methods is almost nonexistent.

Table 7. Comparison of AUROC scores for the memorizing technique at memory usage
levels of both10% and 99% on the SHTech and Corridor datasets.

Memorizing technique Ratio SHTech Corridor
, 10% 85.0% 76.4%
Subsampling — concat
99% 85.1% 76.4%
. 10% 84.9% (-0.1%) 76.3% (-0.1%)
Concat — Subsampling
99% 85.0% (-0.1%) 76.4% (-0.0%)
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04 Experiments Quantitative Evaluation

= Comparison with SOTA methods

Method Venue Memory Avenue  SHTech Corridor
FFP[18] CVPR 18 84.9% 72.8% 64.7%
MPED-RNN [24 CVPR 19 - 73.4% 64.3% .y
MemAE [8[] ] LCCV 19 / 83.3% T12% ) » |t demonstrates the competitive performance compared to
AMC [25] ICCV 19 86.9% - - ot
MTP [29] TACT 30 SR T T T other state-of-the-art (SOTA) methods
CDDA [3] ECCV 20 86.0% 73.3% -
MNAD [26] CVPR 20 v 88.5% 70.5% -
ROADMARP [34] TNNLS 21 88.3% 76.6% - - . .
AMMC-Net [3] AAALDL , 56 6o, T ] Compared to the other methods using memory, a superior
MPN [23] CVPR 21 v 89.5% 73.8% - : :
HF?-VAD [20] ICCV 21 v 91.1% 76.2% - performance IS aChIeVEd'
LLSH [22] TCSVT 22 87.4% 77.6% 73.5%
VABD [17] TIP 22 86.6% 78.2% 72.2%
DLAN-AC [37] ECCV 22 / 89.9%  TAT% - = When compared to HSC, which utilize appearance and
Jigsaw [33] ECCV 22 92.2% 84.3% -
Sunet al. [31] AAAL 23 v 91.5%  78.6% - motion memory, our approach outperforms by 0.4% and
Cao et al. [4] CVPR 23 86.8% 79.2% 73.6%
USTN-DSC [36] CVPR 23 89.9% 73.8% - 2.1% on the Avenue and SHTech datasets, respectively,
DMAD [19] CVPR 23 v 92.8% 78.8% -
FPDM [35] ICCV 23 90.1% 78.6% - leveraging three memory components effectively.
STG-NF* [11] ICCV 23 61.8% 85.9% 61.4%
HSC [32] ICCV 23 v 92.4% 83.0% -
Ristea et al. [28] CVPR 24 91.3% 79.1% -
Zhang et al. [39] CVPR 24 92.4% 85.1% -
VPC (Ours) - v 92.8% 85.1% 76.4%
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05 Conclusion contributions

= | propose VPC, an extension of PatchCore developed for image anomaly detection,

to perform effective video anomaly detection.

= VPC employs two streams (local and global) and three memory banks (spatial, temporal, and high-level semantic)

to capture the spatiotemporal characteristics of videos and detect various forms of anomalies.

= VPC achieves good performance comparable to state-of-the-art methods.
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05 Conclusion ruture works

= | will utilize text embeddings obtained from language models to enable High-level Semantic Memory

to more clearly understand the relationships between objects.

= Current memory is simply designed without training, making it challenging to accommodate various situations.

Since memory needs to be constructed differently based on situations, | will develop a robust memory for diverse situations.

= | will develop an efficient deep learning network and memory to perform

real-time video anomaly detection in an on-device environment.
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= Sunghyun Ahn, Youngwan Jo, Kijung Lee, and Sanghyun Park., “VideoPatchCore: An Effective Method to Memorize
Normality for Video Anomaly Detection”, Asian Conference on Computer Vision (ACCV), 2024.

= Seungkyun Hong*, Sunghyun Ahn*, Youngwan Jo, and Sanghyun Park. (*equally contributed), “Making Anomalies More Anomalous:

Video Anomaly Detection Using a Novel Generator and Destroyer”, IEEE Access, 2024.

= Seungkyun Hong*, Sunghyun Ahn*, Youngwan Jo, and Sanghyun Park. (*equally contributed), “Dual Stream Fusion U-Net Transformers

for 3D Medical Image Segmentation”, IEEE International Conference on Big Data and Smart Computing (BigComp), 2024.
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07 Appendix Quantitative Evaluation

= Detailed Analysis of Subsampling Ratio

Avenue 1% 10% 25% 50% 75% 99%
Spatial 0.848 0.831 0.828 0.825 0.828 0.828
Temporal 0.669 0.669 0.669 0.669 0.669 0.669
High-level 0.844 0.845 0.848 0.844 0.844 0.844
Total 0.928 0918 0914 0.912 0.912 0.912 = The performance difference between using
10% and 99% of memory is very small.
SHTech 1% 10% 25% 50% 75% 99%
Spatial 0.748 0.744 0.747 0.747 0.746 0.746
Temporal 0.788 0.788 0.788 0.788 0.788 0.788 = Inpractical use, sufficiently good
High-level 0.671 0.675 0.684 0.673 0.673 0.674 performance can be maintained even with
Total 0.846 0.850 0.851 0.851 0.851 0.851
memory usage set at 10% or lower,
Corridor 1% 10% 25% 50% 75% 99%
Spatial 0.690 0.705 0.705 0.705 0.706 0.705
Temporal 0.735 0.735 0.735 0.735 0.735 0.735
High-level 0.664 0.672 0.673 0.674 0.675 0.660
Total 0.760 0.764 0.763 0.763 0.763 0.764
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07 Appendix Qualitative Evaluation

» Object-wise Anomaly Scores [Avenue]
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07 Appendix Qualitative Evaluation

= Object-wise Anomaly Scores [SHTech]
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07 Appendix Qualitative Evaluation

= Object-wise Anomaly Scores [Corridor]
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07 Appendix Qualitative Evaluation

= t-SNE Visualization of Memory and Test Patches /Spatial]
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07 Appendix Qualitative Evaluation

= t-SNE Visualization of Memory and Test Patches /7Temporal]
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07 Appendix Qualitative Evaluation

= t-SNE Visualization of Memory and Test Patches /High-level]
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